Human Locomotion and the Motor Cortex Human Locomotion and the Motor Cortex
نویسندگان
چکیده
Human walking displays an impressive precision and the ability to adapt to different terrains. It is suggested that both spinal as well as supra-spinal structures play an important role in this rhythmic task. The current thesis focuses on the role the motor cortex plays in this task. Although there are experimental findings and clinical observations suggesting that one of the supraspinal structures involved in walking is the motor cortex, it is not generally accepted that the motor cortex is of major importance in human locomotion. The motor cortex is generally considered to be important in voluntary movement and the choice to term walking as non-voluntary movement may be more than just semantically important and this matter is discussed in the thesis. The thesis includes five original research papers which show that output from the motor cortex is integrated with contributions from spinal structures in rhythmic tasks such as walking and hopping. In study I it is shown how the motor cortex contributes to motoneuronal drive in conjunction with sensory feedback mediated by spinal reflex loops. The integration between afferent feedback and motor cortex is further displayed in study II, in which we show that afferent input may relay to corticospinal neurons from where it is fed back to the muscle and may produce a large functional directed response during walking. Study II thereby displays a role for the motor cortex in error correction during walking. Study III shows not only that afferent feedback from agonist muscles is relayed to corticospinal neurons during walking but also that feedback from the antagonist is relayed to the motor cortex where signals from both muscles increase the excitability of the motor cortex. This organisation is somewhat reversed from the organisation of antagonist afferent input to the spinal cord, but it may be hypothesised that both spinal and supra-spinal structures contribute to a balanced response to a perturbation. The motor cortex also plays a role during normal, unperturbed walking. In study IV we show that output from the motor cortex may be suppressed during walking and standing by exciting intracortical inhibitory interneurons using subthreshold transcranial magnetic stimulation. The results may be explained by the suggestion that there is less corticospinal output during walking. Alternatively, it may be suggested that it is more difficult to stop the corticospinal neurons or motoneurons from firing during walking. The final study showed that muscle activity can still be suppressed during a dynamic contraction during sitting and it also suggests that the observed effects cannot be unambiguously related to changes in corticospinal output. In conclusion, the studies in the thesis further confirm a role for the primary motor cortex in driving the muscle during rhythmic tasks like walking and hopping. It shows a role for the motor cortex in mediating afferent feedback to both agonists as well as antagonists, underlining the integrative nature of the neural system. Indirect measurements of the ability of intracortical inhibitory neurons to suppress corticospinal neurons suggest that the motor cortex is involved in both walking and standing, but that the control is very different. Dansk resumé (Abstract in Danish) Det menneskelig gangmønster viser imponerende præcision og evne til at tilpasse sig til forskelligt terræn. Det er blevet foreslået at både spinale og supraspinale strukturer spiller en vigtige rolle i denne rytmiske opgave. Denne afhandling er centreret om hjernebarkens rolle ved gang og hop. Selv om eksperimentelle resultater og kliniske observationer antyder at hjernebarken er en af de supraspinale strukturer som er involveret i gang, er det ikke generelt accepteret at hjernebarken er af stor betydning i den menneskelige gang. Den motoriske hjernebark anses generelt for at være vigtig i voluntære bevægelse og en beslutning om at beskrive gang som en ikkevoluntære bevægelse, kan være mere end bare et semantisk vigtigt spørgsmål, hvilket også tages op i afhandlingen. Specialet omfatter fem originale forskningsartikler, som viser, at output fra den motoriske hjernebark er integreret med bidrag fra spinale strukturer i rytmiske opgaver som gang og hop. Studie I påviser, hvordan den motoriske hjernebark bidrager til at styre motoneuroner sammen med sensorisk feedback medieret af spinale reflekser. Integrationen mellem afferent feedback og hjernebarken er yderligere vist i studie II, hvor vi viser, at afferente input overføres til corticospinal neuroner, hvorfra det føres tilbage til musklen og producerer en stor funktionelt rettet reaktion i gangmønstret. Derved viser study II at den motoriske hjernebark spiller en rolle i fejlkorrektion under gang. Studie III viser, at ikke kun afferent feedback fra agonist muskler videresendes til corticospinal neuroner under gang, men at også feedback fra antagonisten videresendes til den motoriske hjernebark, hvor signaler fra begge muskler øger ophidselse af den motoriske hjernebark. Denne organisation er på en måde modsat af organiseringen af antagonist afferent input til rygmarven, men det kan foreslås at både spinal og supra-spinal strukturer tilsammen bidrager til en afbalanceret respons på en forstyrelse. Den motoriske hjernebarke spiller også en rolle under normal uforstyrret gang. I studie IV viser vi, at output fra den motoriske hjernebark kan undertrykkes ved sub-tærskel transkraniel magnetisk stimulation under gang og i ståendende stilling. Resultaterne kan forklares ud fra et forslag om, at der er mindre corticospinal output under gang i sammenligning med stående stilling. Alternativt kan det foreslås, at det er vanskeligere at hindre de corticospinal neuroner eller motorneuroner i at fyre under gang. Den sidste undersøgelse viste, at muskel aktivitet dog kan undertrykkes ved hjælp af sub-tærskel magnetisk stimulation under en dynamisk muskelkontraktion og resultaterne indikerer, at de observerede effekter i studie IV og V ikke entydigt kan relateres til ændringer i corticospinal output. Undersøgelserne i specialet bekræfter at hjernebarken har en rolle i forhold til at styre musklen under rytmiske opgaver som at gå og hoppe. De viser at den motoriske hjernebark spiller en rolle i mediering af afferent feedback til både agonister og antagonister, hvilket understreger integrerende karakter af det neurale system. Indirekte målinger af intracortical hæmmende neuroners evne til at undertrykke corticospinal neuroner antyder, at det hjernebarken er involveret i både det at gå og stå, men at den kontrollen muligvis er meget forskellig Fryske gearfetting (Abstract in Frisian) It gean fan de minske lit in sekuerens sjen dy’t yndruk makket. Boppedat kinne we op hiel ferskillende wizen rinne. Der wurdt tocht dat senuwstruktueren op en boppe it nivo fan it rêchpiid dêryn in taak ha. Yn dizze teze giet it benammen om de rol fan de bast fan de harsens by it rinnen of springen. Ek al jouwe eksperiminten en klinyske observaasjes oanwizings dat de harsenbast ien fan ‘e wichtichste boppe-rêchpiidske struktueren foar it rinnen is, wurdt dat net oeral erkend. Wol wurdt fakernôch oannommen dat de harsenbast wichtich is by frijwillige bewegings. Dêrom is de kar om rinnen te beneamen as netfrijwillich mear as inkeld wurdboarterij. Yn dizze teze sitte fiif orizjinele ûndersyks-artikelen dy’t sjen litte dat sinjalen út de harsenbast harren gearfoegje mei sinjalen út oare senuwstruktueren om sa in ritmyske beweging oan te stjoeren. Stúdzje I lit sjen hoe’t de harsenbast it motoneuron oanstjoert en hoe’t dat yntegrearre is mei sensoaryske ynformaasje út de skonken. It gearfoegjen fan afferinte sinjalen en sinjalen út de harsenbast is ek oantoand yn stúdzje II. Yn dy stúdzje litte we sjen hoe’t afferinte sinjalen nei de harsenbast geane en fan dêrút soargje foar in grutte reaksje yn de spieren fan de skonken. Stúdzje II lit sadwaande sjen hoe’t de harsenbast soarget foar korreksje fan ôfwikings fan it foarnommen ferrin fan de beweging. Stúdzje III lit sjen dat yn de harsenbast ynformaasje fan sawol de agonist as de antagonist oankomt en dat beide kearen de saneamde eksabiliteit tanimt. Dizze organisaasje is likernôch it omkearde fan de organisaasje fan antagonistyske afferinte input nei it rêchpiid, mar wy kinne de hypoteze pleatse dat spinale en supra-spinale struktueren gearwurkje oan in balansearre reaksje nei in fersteuring. De harsenbast spilet ek in rol yn it gewoane, ûnfersteurbere rinnen oer in sljochte ûndergrûn. Sa litte wy yn stúdzje IV sjen dat de output fan de harsenbast ûnderdrukt wurde kin troch remjende yntrakortikale senuwen te eksitearen mei sub-threshold transkraniele magnetyske stimulaasje (TMS). De resultaten kinne útlein wurde troch de suggestje dat der ûnder it rinnen minder output is út de harsenbast as by it stean. Dochs kin it ek útlein wurde mei de suggestje dat it ûnder it rinnen dreger is om de aktiviteit fan in kortikospinale senuw te stopjen. De lêste stúdzje lit sjen dat men mei sub-threshold TMS ek spieraktiviteit ûnderdrukke kin by in dynamysk gearlûken fan de spier en dat ûnderdrukking fan de spieraktiviteit net altiten hielendal gear liket te hingjen mei de poarsje aktiviteit dy’t der út de harsenbast komt. De stúdzjes yn dizze teze befêstigje in rol foar de harsenbast yn ritmyske taken lykas rinne en springe. It lit in rol foar de harsenbast sjen yn it ferwurkjen fan sinjalen fan agonist en antagonist en ûnderstreekje sa it gearwurkjen yn it senuwsysteem. Yndirekte mjittingen nei hoe maklik remjende senuwen spieraktiviteit ûnderdrukke kinne, litte sjen dat de harsenbast belutsen is by sawol rinnen as stean, mar dat dy ferskillende oanstjoering lykje te hawwen.
منابع مشابه
Unidirectional brain to muscle connectivity reveals motor cortex control of leg muscles during stereotyped walking
In lower mammals, locomotion seems to be mainly regulated by subcortical and spinal networks. On the contrary, recent evidence suggests that in humans the motor cortex is also significantly engaged during complex locomotion tasks. However, a detailed understanding of cortical contribution to locomotion is still lacking especially during stereotyped activities. Here, we show that cortical motor ...
متن کاملConnectivity of the Cingulate Sulcus Visual Area (CSv) in the Human Cerebral Cortex.
The human cingulate sulcus visual area (CSv) responds selectively to visual and vestibular cues to self-motion. Although it is more selective for visual self-motion cues than any other brain region studied, it is not known whether CSv mediates perception of self-motion. An alternative hypothesis, based on its location, is that it provides sensory information to the motor system for use in guidi...
متن کاملSignals from the ventrolateral thalamus to the motor cortex during 1 locomotion
25 The activity of the motor cortex during locomotion is profoundly modulated in the 26 rhythm of strides. The source of modulation is not known. In this study we examined the 27 activity of one of the major sources of afferent input to the motor cortex, the ventrolateral 28 thalamus (VL). Experiments were conducted in chronically implanted cats using an 29 extracellular single neuron recording...
متن کاملSignals from the ventrolateral thalamus to the motor cortex during locomotion.
The activity of the motor cortex during locomotion is profoundly modulated in the rhythm of strides. The source of modulation is not known. In this study we examined the activity of one of the major sources of afferent input to the motor cortex, the ventrolateral thalamus (VL). Experiments were conducted in chronically implanted cats with an extracellular single-neuron recording technique. VL n...
متن کاملOptical Imaging of the Motor Cortex in the Brain in Order to Determine the Direction of the Hand Movements Using Functional Near-Infrared Spectroscopy (fNIRS)
Introduction: In recent years, optical imaging has attracted a lot of attention from scholars as a non- aggressive, efficient method for evaluating the activities of the motor cortex in the brain. Functional near-infrared spectroscopy (fNIRS (is a tool showing the hemodynamic changes in a cortical area of the brain according to optical principles. The present study has been de...
متن کاملTaking the next step: cortical contributions to the control of locomotion.
The planning and execution of both discrete voluntary movements and visually guided locomotion depends on the contribution of multiple cortical areas. In this review, we discuss recent experiments that address the contribution of the posterior parietal cortex (PPC) and the motor cortex to the control of locomotion. The results from these experiments show that the PPC contributes to the planning...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2013